Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework

نویسنده

  • XUGUANG WANG
چکیده

Gridpoint statistical interpolation (GSI), a three-dimensional variational data assimilation method (3DVAR) has been widely used in operations and research in numerical weather prediction. The operational GSI uses a static background error covariance, which does not reflect the flow-dependent error statistics. Incorporating ensemble covariance in GSI provides a natural way to estimate the background error covariance in a flowdependent manner. Different from other 3DVAR-based hybrid data assimilation systems that are preconditioned on the square root of the background error covariance, commonly used GSI minimization is preconditioned upon the full background error covariance matrix. A mathematical derivation is therefore provided to demonstrate how to incorporate the flow-dependent ensemble covariance in the GSI variational minimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments

An ensemble Kalman filter–variational hybrid data assimilation system based on the gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) system was developed. The performance of the system was investigated using the National Centers for Environmental Prediction (NCEP) Global Forecast System model. Experiments covered a 6-week Northern Hemisphere winte...

متن کامل

Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model

The background error covariance (correlation) between model state variables is of central importance for implementing data assimilation and understanding model dynamics. Traditional approaches for estimating the background error covariance involve many heuristic approximations, and often the estimated covariance is flow-independent, i.e. only reflecting statistics of the climatological backgrou...

متن کامل

Developments in Probabilistic Modelling with Neural Networks|ensemble Learning 1 Ensemble Learning by Free Energy Minimization

Ensemble learning by variational free energy minimization is a framework for statistical inference in which an ensemble of parameter vectors is optimized rather than a single parameter vector. The ensemble approximates the posterior probability distribution of the parameters. In this paper I give a review of ensemble learning using a simple example. A new tool has recently been introduced into ...

متن کامل

Assimilating AMSU-A Radiances in the TC Core Area with NOAA Operational HWRF (2011) and a Hybrid Data Assimilation System: Danielle (2010)

A regional hybrid variational–ensemble data assimilation system (HVEDAS), the maximum likelihood ensemble filter (MLEF), is applied to the 2011 version of the NOAA operational Hurricane Weather Research and Forecasting (HWRF) model to evaluate the impact of direct assimilation of cloud-affected Advanced Microwave Sounding Unit-A (AMSU-A) radiances in tropical cyclone (TC) core areas. The forwar...

متن کامل

NOTES AND CORRESPONDENCE On the Theoretical Equivalence of Differently Proposed Ensemble–3DVAR Hybrid Analysis Schemes

Hybrid ensemble–three-dimensional variational analysis schemes incorporate flow-dependent, ensembleestimated background-error covariances into the three-dimensional variational data assimilation (3DVAR) framework. Typically the 3DVAR background-error covariance estimate is assumed to be stationary, nearly homogeneous, and isotropic. A hybrid scheme can be achieved by 1) directly replacing the b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010